
META-SEQUENCING: CONTROLLING SEQUENCE VOICES AND
POLYPHONY USING THE POLYMAP, SIEVE, VALVE AND MASKXOR

OBJECTS IN PURE DATA

Dr Edward Kelly
London College of

Communication
University of the Arts London

London SE1 6SB
morph_2016@yahoo.co.uk

ABSTRACT

I describe a system of polyphony for Pure Data
(Puckette, 1996) that is applicable to situations where
multiple sequencers are routed to multiple voices, so that
the degree of polyphony may be controlled for each
sequencer, and polyphonic voices are assigned
automatically. Three new objects are crucial for this
purpose: maskxor, a bitmask object, sieve, an array-
based router, polymap, a polyphony-controlled matrix
map and valve, a source identifier object. These objects
are configured to dynamically adjust the allocation of
sequencer events and playback voices so that for
example in the Speechcutter-poly application developed
in association with the Centre for Creative Research in
Sound Art Practise1 at the London College of
Communication, eight sequencers independent of one
other are routed to 32 shared voices, and relationships
and linkages between the sequencers may be altered on-
the-fly.

1.INTRODUCTION

Traditional approaches to sequencing have a top-down
system of polyphony control, where the polyphony is
managed as a layer of functions between the event data
and the playback engine, or by the playback engine itself
as a separate module (figure 1). A clock references an
arbitrary sequence of events that are triggered at a
prescribed time (e.g. MIDI note on and off messages)
and this is independent of the type of events to be
triggered (e.g. sample lengths). In contrast to this, event
chain sequencing happens when the timing of events is
dictated by the nature of the events themselves.

Figure 1. Traditional clock-based sequencing triggers
events regardless of the nature of events to be triggered.

In relation to the Speechcutter application, the form of
polyphonic management system departs from the
traditional methods in favour of a layer of polyphony
management that interacts with the voices themselves, so
that events determine the sequence timings. Playback
polyphony is handled dynamically by the system, and

1Http://www.crisap.org

sequencer polyphony is determined by the user but
implemented using the new objects. Furthermore, the
possibility of interleaving and bifurcating chain event
sequences is presented, and so a mechanism has been
developed to ensure that this process is robust in real
time performance.

2.EVENT CHAIN SEQUENCING

Previous applications2 developed by the author had used
a form of sequencing hereby know as event-chain
sequencing (figure 2), where each event is triggered by
each previous event's termination. More recently, the
Speechcutter was developed as a tool for creating
analysis-based sequences of speech fragments based on
research into taxonomic systems for classification of
speech timbres (Kelly, 2006). Originally this consisted
of an analysis tool for a single sound file and a set of
sequencing tools. Each method of sequencing (e.g.
brassage, fragment time-order) had its own monophonic
voice, so that there was one voice per-method and no
linkage between each method (sequencer). Since event-
chain sequencing can be used to reassemble a sequence
of segmented audio with virtually no clicks or glitches
between each segment3.

Figure 2. The basic architecture of a simple monophonic
chain-event sequencing system. The First box contains

2 For example, Troubled Waters for Max/MSP at
http://www.sharktracks.co.uk/software/msp/troubledwat
ers.zip
3Although this is only true when the material is played
back at pitch, using tabplay~ in PD for example, since
tabplay~ emits a bang that is accurate to the end of the
table rather than an exterrnal measurement of time.
Externally measuring the amount of time taken to play a
section of time is necessary when using tabread4~ - so
that the pitch can be changed by varying the messages
sent to line~. Then, very slight glitches are heard in the
output, but these are unnoticeable unless it is the
original phrase that is reassembled.

 373

the sequence information, and a counter that steps
through the sequence. Procession parameters such as

speed of procession, randomization and so on, are used
to control the sequence as it unfolds.

It was decided that this application be developed so that
multiple sound files could be analysed and sequenced
simultaneously. This developed into Speechcutter-poly
where eight sequencers access eight slots, each of which
contains a set of analyses (onsets, pitch, high frequency
profile, loudness and voicing) that determine the
fragmentation of a single sound file according to banded
thresholds. The possibility to link sequences together so
that for example the loudest fragments of one file are
interleaved with the unvoiced fragments of another,
became apparent. Therefore it was necessary to develop
a flexible system of polyphony management, so that
alterations to the system could be made in performance.

2.1.Meta-Sequencing

Taking the basic principle of event-chain sequencing it is
fairly simple to devise a scheme whereby several
sequencers can be interleaved. The count and sequence
information is still stored in the sequencer module for
each analysis of the voice, but these are triggered from a
meta-sequence module that steps through each sequencer
one by one, or plays them in a random order. Figure 3
shows the scheme for this system, and assumes still that
each sequence has one voice. In fact, this system if
triggered only once will only use one voice at a time, but
further polyphony for each sequencer would be
necessary if there were an arbitrary pulse applied instead
of the chain-events such as a metro object in PD or Max
so that clock-based and event-based sequencing could be
used together in one application.

Figure 3. A more complex system involving three linked
sequencers, each with a sample player, sequence and
counter, but controlled by a central meta-sequence

module (Count or Random, which steps through the
sequence of sequences linearly or randomly).

2.2.Polysequencing – Realtime Complexity

So far this is fairly simple to achieve and uses few
resources to create complex sequences of sound, where
each component sequence of the meta-sequence
proceeds position-wise independently of the others.
However this is a fixed system of three, and the
possibilities for greater flexibility in terms of live

performance become apparent by what this system
cannot do:

1. Only one meta-sequence can run at a time with
any coherent ordering of the segments

2. Transposing the segments down but keeping the
time of procession the same results in note-
stealing

3. Triggering the sequence from an external source
(e.g. metro) results in note-stealing, and there is
no way to set polyphony to overcome this.

4. Sequences may not be de-coupled (i.e. The
architecture is fixed).

The Speechcutter-poly system contains eight
independent sets of analyses of user-input sound
recordings, and eight separate sequences. In order to
develop this to include metronomic rather than chain-
event sequencing and so that segments may overlap
when transposed down, it would be possible to construct
the system to include multiple voices per sequencer. But
in order to minimize resources used, 64 voices of
playback may restrict the software to only run on more
powerful machines, and when a sequence of only four
simultaneous segments is running there is no need for
extra voices to be on. Instead a bank of 16 voices is used
in a chain, where each sample player passes the note
onto the next if it is busy. Another 16 voices are
available if the user so desires, but this still complicates
matters in terms of how many voices to allocate to each
sequencer as defined by the following question: If two
voices are used for each sequencer, then clock-based
sequencing can cause notes to be cut off (note stealing),
but if the sample players are allocated dynamically then
how can the system detect where each note came from
originally (and hence which sequence to trigger next)
when linked event-chain sequences are running?

A system could be designed to switch between static and
dynamic allocation, but this is further complicated when
it is possible to interleaved and decouple sequencers
dynamically, so that even if the sequence of origin is
known it's relationship to others may have changed once
a note has been played. This could potentially stall the
system each time a change is made in the linkage of
sequences to each other, and other sequences could be
triggered by accident.

2.3.Dynamic Routing and Linked Sequences

Four objects have been created by the author in response
to these problems, sieve, maskxor, valve, and polymap.

 374

Figure 4. The floats into the inlet only pass through the
sieve object if there is a corresponding non-zero value in

the array at that index.

Sieve is a demultiplexer that stores an array of floats,
and will only output a value if it indexes a value not
equal to zero in the array as shown in figure 4. Floats are
treated as integers (indexes to the map) in this instance,
and the sieve object is used to route the correct note on
and note off messages to the correct meta-sequencer
(since each meta-sequencer addressed a number of
sequences). This works well when the machines are
running in a fixed configuration, but a problem arises
when one sequencer is de-coupled from another whilst a
note is playing. If the sequencer playing the note is one
that has been de-coupled from the meta-sequencer
driving the system, the note off message that tells the
meta-sequencer to trigger another sequence element
would not now pass through the sieve and so the
sequence will stop.
The solution to this problem lies with the maskxor
object (figure 5). This creates a bitmap that is the result
of an exclusive or evaluation of each element of two
arrays.

Figure 5. The difference between listr and listl is only
one element, and the index of this element is the only

number that will pass through the maskxor object.

The listr array is set to be the sieve mask prior to the
decoupling, and the listl array is the sieve mask after the
decoupling. So if a note off message comes from a
sequence that has been decoupled then it may be used to
trigger another element from the new meta-sequence.
De-linking sequences in this instance results in only one
meta-sequence playing, and sequences that were
disconnected from the chain terminate. The potential to
create bifurcating meta-sequences – meta-sequences
that split into two independent meta-sequences requires
that de-linked sequences are re-started as the sequences
are de-linked from one another.
Each sequence has a corresponding governor sequence,
one of eight master controllers that is associated with the
first sequence in each meta-sequence or chain of

sequences. These could simply be switched off and then
on again if the sequence were to bifurcate, but this would
not be event-driven but arbitrary. In order for this to
happen according to the timings of events it should be
triggered by a note off message, and this presents
another problem. Depending on what sequence's element
of the meta-sequence is playing when the bifurcation
occurs, the note off message will not necessarily
correspond to the governor controlling the meta-
sequence. Once the sequences are de-linked, a note off
message previously corresponding to one governor
would be sent to another, and the first sequence would
terminate.
The valve object routes floats (note off messages)
according to whether another float (the governor id) is
present within the bitmask, and so this is used to identify
which governor needs to be triggered as another is
started in order to bifurcate the stream of events. This is
shown schematically in figure 6.

Figure 6. The valve object allows for sequences to
bifurcate.

The maskxor object is cleared after this operation. Thus
it is possible with these three objects to create a dynamic
system of linkage between independent sequencers
without the need to create exhaustive networks of all the
possible routes a message might take in PD.

3.POLYPHONY CONTROL

The polyphony of each meta-sequence is controlled by
the polymap object (figure 7, top). Each voice is given
its own number, and sends a message to the polyphony
control system on a note on or a note off. This consists
of the structure [origin(sequence), destination(voice),
on/off(1/0)] and this is unpacked and the origin is sent to
the sieve object before it is repacked, ensuring that no
elements of the 32 x 32 matrix within polymap are set
that are not from the meta-sequence concerned. Elements
within the matrix (bottom) are set, up to the maximum
number allowed by the maxpoly parameter at the right
inlet (or by the creation argument).

 375

Figure 7. The polymap object (top) stores
sequence/voice pairs in a matrix (bottom) up to the

amount dictated by the maxpoly parameter. When a note
on message is sent, a new instance of what playback

voice was invoked is reported. When a corresponding
note off message arrives, polymap reports that the
sequencer has a voice free, and this can be used to

trigger a new event

Playback voices invoked are reported at a note on event,
and sequencer voices freed are reported at a note off
event. This means that the polyphony can be managed in
terms of how many voices a sequencer uses rather than
how many playback voices are used, so events do not
drop out of sequence in a phrase no matter how it is
interleaved. This closes a gate when this polyphony is
reached so that it can be used to control external metro
objects, shutting them off so that they do not trigger
unheard events, and the sequence is preserved1.

4.CONCLUSION

The resultant system shown in figure 6 allows for
extremely precise control of polyphony, structure and
linkage within a network of eight sequencers and 32
playback voices. It is configured in such a way, using the
four new objects described, that multiple sequencers can
interleave or bifurcate, and meta-sequences can grow or
shrink in performance time. It's elegance lies in the way
the system adapts to preserve the sequential ordering of
each sequence instead of cutting off events halfway, or
negating them altogether, although this is also
controllable from within the Speechcutter-poly
application.

1 Although this can be overridden on the speechcutter-
poly, so that the timing of the sequence has precedence
over the sequence order.

Figure 8. The architecture of Speechcutter-poly in some
detail. The single datastream at the bottom of the figure
is sorted within the individual meta objects. The meta

objects are the triggers for sequence events, and whether
or not the next event happens depends on whether a

polymap object reports a freed sequence voice (rather
than playback as in traditional polyphony management).
Managing event data in this way is different from other
polyphonic systems in that the polyphony management
and data flow is integrated into the generation of events,
and thus it can be made to create sequences of material
that evolve according to the nature of the material rather
than an arbitrary scheme. Furthermore, it is a system of
sequencing that is interactive and live, and may point
towards future developments in structured improvisation
using live electronics.

5.REFERENCES

[1] Kernighan, B and Ritchie, D. 1978, 1988. “The
C Programming Language”, Prentice Hall, New
Jersey, USA

[2] Puckette, M. 1996. "Pure Data: another
integrated computer music environment."
Proceedings, Second Intercollege Computer
Music Concerts, Tachikawa, Japan, pp. 37-41

[3] Kelly, E. 2002. “Time in Music: Strategies for
Engagement”, PhD thesis, University of East
Anglia Library, Norwich, UK.

[4] Kelly, E. 2006. “Deconstructing Speech: New
Tools for Speech Manipulation.” Organised
Sound, Volume 11, No. 1: Cambridge
University Press, UK.

6. Source Code:

 376

1. Pure Data is available from Miller Puckette's
website at
http://crca.ucsd.edu/~msp/software.html

2. polymap, sieve, maskxor and valve are
available via cvs from the Sourceforge website:
http://pure-
data.sourceforge.net/old/developer.php

3. These objects are also available as part of the
Pure Data Extended release from Hans
Christoph Steiner:
http://at.or.at/hans/pd/installers.html

4. Speechcutter is available from the CriSAP
website at
http://www.crisap.org/index.php?new_creative_
tools

5. The PhD thesis referred to above may be
accessed at
http://www.sharktracks.co.uk/epk/thesis.html

 377

